Grade 11 Mathematics Solution
Sets,Real Number System and Logic.
Exercise 1.1
1.
Soln:
a. A U B = {1, 2, 3, 4} U {3, 5, 7, 8} = {1, 2, 3, 4, 5, 7, 8}
b. A ∩ C = {1, 2, 3, 4} ∩ {1, 2, 7, 8} {1, 2}
c. (A – B) ∩ C = ({1, 2, 3, 4} – {3, 5, 7, 8}) ∩ {1, 2, 7, 8}
= {1, 2, 4} ∩ {1, 2, 7, 8} = {1, 2}
d. A U C = {1, 2, 3, 4} U {1, 2, 7, 8}
So, A U C = {1, 2, 3, 4, 7, 8}
Now, $\overline {{\rm{AUC}}} $ = U – (AUC)
So, $\overline {{\rm{AUC}}} $ = {5, 6, 9, 10}
e. ${\rm{\bar B}}$ = U – B = {1, 2, 3, …9, 10} – {3, 5, 7, 8}
= {1, 2, 4, 6, 9, 10}
Or, ${\rm{\bar C}}$ = U – C = {1, 2, 3, ….9, 10} – {1, 2, 7, 8}
Or, ${\rm{\bar B\: }}$U ${\rm{\bar C}}$ = {1, 2, 4, 6, 9, 10} U {3, 4, 5, 6, 9, 10}
Or, ${\rm{\bar B\: }}$U ${\rm{\bar C}}$ = {1, 2, 3, 4, 5, 6, 9, 10}
f. (AUB) – C = {1, 2, 3, 4, 5, 7, 8} – {1, 2, 7, 8} [from1(a)]
= {3, 4, 5}
2.
Soln:
a. AUB = {b, c, d, e} U {d, e, f, g, h, i} = {b, c, d, e, f, g, h, i}
b. A∩C = {b, c, d, e} ∩ {a, e, i, o, u} = {e}
c. A – B = {b, c, d, e} – {d, e, f, g, h, i} = {b, c}
d. A – C = {b, c, d, e} – {a, e, i, o, u} = {b, c, d}
e. (A – C) ∩ C = {b, c, d} ∩ {a, e, i, o, u} [from 2(d)] = ɸ
f. A $\Delta $ D = (A – D) U (D – A)
=({b, c, d, e} – {b, d, j, k}) U ({b, d, j, k} – {b, c, d, e})
= {c, e} U {j, k} = {c, e, j, k}
g. (AUB) – C = {b, c, d, e, f, g, h, i} – {a, e, i, o, u} [from 2(a)]
= {b, c, d, f, g, h}
h. ${\rm{\bar B}}$ = U – B = {a, b, c, d, ….i, j, k} – {d, e, f, g, h, i} = {a, b, c}
i. A – B = U – (A – B)
= {a, b, c, d, ….i, j, k} – {b, c} = {a, d, e, f, g, h, i, j, k}
3.
a.
Soln:
Here, U = {x:x is a positive integer les than 12}
So, U = {1, 2, 3, ….11}
Now, A U B = {3, 5, 7, 9} U {1, 2, 3, 8, 9} = {1, 2, 3, 5, 7, 8, 9}
So, $\overline {{\rm{AUB}}} $ = U – (AUB)
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} – P1, 2, 3, 5, 7, 8, 9}
= {4, 6, 10, 11}
Again, A – B = {3, 5, 7, 9} – {1, 2, 3, 8, 9} = {5, 7}
So, (A – B) U C = {5, 7} U {1, 4, 5, 7, 10} = {1, 4, 5, 7, 10}
And,
A – C = {3, 5, 7, 9} – {1, 4, 7, 10} = {3, 5, 9}
So, (A – C) ∩ B = {3, 5, 9} ∩ {1, 2, 3, 8, 9} {3, 9}
b.
Soln:
Here, U = {x:x is a natural number upto 20}
So, U = {1, 2, 3,...20}
A = {x:x≥ 6} = {6, 7, 8, ….20}
B = {x:x ≤ 8} = {1, 2, 3, ….8}
C = {x:10< x < 15} = {11, 12, 13, 14}
Now, B U C = {1, 2, 3, 4, 5, 6, 7, 8} U {11, 12, 13, 14}
So, B U C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
Again, A∩B = {6, 7, 8, …20} ∩ {1, 2, 3, ….8} = {6, 7, 8}
And, A – C = {6, 7, 8….20} – {11, 12, 13, 14}
= {6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20}
And A U B = {6, 7, 8, …., 20} U {1, 2, 3….8}
= {1, 2, 3, …..20} = U.
So, $\overline {{\rm{AUB}}} $ = U – (AUB) = U – U = ɸ.
4.
a.
Soln: Here,
A = {x:x = 2n + 1, n≤5, nԑN}
So, A = {3, 5, 7, 9, 11}
B = {x:x = 3n – 2, n≤4, nԑN}
So, B = {1, 4, 7, 10}
Now, A U B = {3, 5, 7, 9, 11} U {1, 4, 7, 10}
= {1, 3, 4, 5, 7, 9, 10, 11}
A ∩ B = {3, 5, 7, 9, 11} ∩ {1, 4, 7, 10} = {7}
And, B – A = {1, 4, 7, 10} – {3, 5, 7, 9, 11} = {1, 4, 10}
b.
Soln:
here, U = {1, 2, 3, ….},
A = {3, 6, 9, 12, 15, 18}
B = {6, 12, 18, 24, 30}
So, A ∩ B = {3, 6, 9, 12, 15, 18} ∩ {6, 12, 18, 24, 30}.
= {6, 12, 18}
And A – B = {3, 6, 9, 12, 15, 18} – {6, 12, 18, 24, 30} = {3, 9, 15}
c.
Soln;
Here, U = {x: –1≤x – 2 ≤7} = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A ={x:x is a prime number} = {2, 3, 5, 7}
B = {x:x is a odd number} = {1, 3, 5, 7, 9}
Now,
(i) The sets if elements which are either prime or odd = A U B = {2, 3, 5, 7} U {1, 3, 5, 7, 9} = {1, 2, 3, 5, 7, 9}
(ii) The sets if elements which are prime as well as odd = A U B = {2, 3, 5, 7} ∩ {1, 3, 5, 7, 9} = {3, 5, 7}
(iii) The sets if elements which are prime but not odd = A – B = {2, 3, 5, 7} – {1, 3, 5, 7, 9} = {2}
5.
Soln: Here,
A U B = {a, b, c, d} U {c, d, e, f} = {a, b, c, d, e, f}
A U C = {a, b, c, d} U {d, e, f, g, h} = {a, b, c, d, e, f, g, h}
B ∩ C = {c, d, e, f} U {d, e, f, g, h} = {d, e, f}
a.
L.H.S. = A U (B ∩ C)
= {a, b, c, d, e, f} U {d, e, f} = {a, b, c, d, e, f}
R.H.S. = (A U B) ∩ (A U C)
= {a, b, c, d, e, f} ∩ {a, b, c, d, e, f, g, h} = {a, b, c, d, e, f}
Hence, A U (B ∩ C) = (A U B) ∩ (A U C)
b.
A ∩ B = {a, b, c, d} ∩ {c, d, e, f} = {c, d}
A ∩ C = {a, b, c, d} ∩ {d, e, f, g, h} = {d}
B U C = {c, d, e, f} U {d, e, f, g, h} = {c, d, e, f, g, h}
Now, LHS = A ∩ (B U C) = {a, b, c, d} ∩ {c, d, e, f, g, h} = {c, d}
RHS = (A∩B) U (A ∩ C) = {c, d} U {d} = {c, d}
Hence. A ∩ (B U C) = (A∩B) U (A ∩ C)
c.
soln: ${\rm{\bar A}}$ = U – A = {a, b, c, d, e, f, g, h} – {a, b, c, d} = {e, f, g, h}
${\rm{\bar B}}$ = U – B = {a, b, c, d, e, f, g, h} – {c, d, e, f} = {a, b, g, h}
Now, LHS = $\overline {{\rm{AUB}}} $
= U – (AUB)
= {a, b, c, d, e, f, g, h} – {a, b, c, d, e, f} = {g, h}
R.H.S. = ${\rm{\bar A}}\mathop\cap\nolimits^ {\rm{\bar B}}$ = {e, f, g, h} ∩ {a, b, g, h} = {g, h}
Hence, $\overline {{\rm{AUB}}} = {\rm{\bar A}}\mathop\cap\nolimits^ {\rm{\bar B}}$.
d.
Here,
A – B = {a, b, c, d} – {c, d, e, f} = {a, b}
A – C = {a, b, c, d} – {d, e, f, g, h} = {a, b, c}
Now, LHS = A – (B U C) = {a, b, c, d} – {c, d, e, f, g, h} = {a, b}
RHS = (A – B) ∩ (A – C) = {a, b} ∩ {a, b, c} = {a, b}
Hence, A – (B U C)= (A – B) ∩ (A – C).
6.
a.
Soln:
(i)
We have,
n (A U B) = n(A) + n(B) – n(A∩B)
Or, 80 = 75 + 40 – n (A∩B)
Or, n(A∩B) = 155 – 80 = 35
(ii) n(A – B) = n(A) – n (A∩B) = 75 – 35 = 40
(iii) $\overline {{\rm{n}}\left( {{\rm{AUB}}} \right)} $ = n(U) – n(A U B) = 100 – 80 = 20
b.
Soln:
(i) n(AUB) = n(B) [A ⊂ B]
So, n (A U B) = 50
(ii) n(AnB) = n(A) [A⊂B]
So, n(AnB) = 37.
7.
Soln:
Let B = basketball, V = volleyball
So, n(B) = 32, n(V) = 25, n(B∩V) = 13
Thus, the number of students playing at least one game,
n(BUV) = n(B) + n(V) – n(B∩V) = 32+25 – 13 = 44.
8.
Soln:
Here, Let N = Nepali, Ne = newari,
So, n(N) = 60%, n(Ne) = 50%, n(N u Ne) = 100%.
n(N ∩ Ne) = ?,
We have,
n(N U Ne) = n(N) + n(Ne) – n(N ∩ Ne)
or, 100% = 60% + 50% – n(N ∩ Ne)
So, n(N ∩ Ne) = 110% – 100% = 10%.
9.
Soln: Here, let M = Mathematics, S = statistics,
So, n(U) = 120, n(M) = 90, n(S) = 72.
n$\overline {{\rm{MUS}}} $ = 10, n(M∩S) = ?
We have,
n(U) = n(M) + n(S) – n(M∩S) + n$\overline {{\rm{MUS}}} $
or, 120 = 90 + 72 – n(M∩S) + 10
so, n(M∩S) = 52.
10.
Soln:
(a)
Let T = tea and C = coffee
So, n(U) = 65, n(T) = 38, n (T – C) = 20
n$\overline {{\rm{TUC}}} $ = 15.
To find, (a) n(T∩C) (b) n(C – T)
= 38 – 20
= 18.
(b)
n(C – T) = ? [first we have to find n(C)]
Since, n(U) = n(T) + n(C) – n(T∩C) + n $\overline {{\rm{TUC}}} $
Or, 65 = 38 + n(C) – 18 + 15
So, n(C) = 65 – 35 = 30.
So, n(C – T) = n(C) – n(T ∩ C) = 30 – 18 = 12.
11.
Soln:
Let M = mathematics, S = statistics
So, n(U) = 100%, n(M) = 27%, n(S) = 31%.
n(M∩S) = 60%
Failed in examination, n(MUS) = ?
We have, n(MUS) = n(M) + n(S) – n(M∩S)
= 27% + 31% – 6% = 58% – 6% = 52%.
Passed in both subjects, $\overline {{\rm{n}}\left( {{\rm{MUS}}} \right)} $ = 100% – 52% = 48%.
12.
Soln:
Let M = Mathematics, P = physics,
S = Statistics,
n(M) = 12,
n(P) = 11
n(S) = 15
no(M) = 4
no(S) = 7
no(S∩P) = 3
no(M∩S) = 1
Now,
(a)
Students reading all three subjects,
n(M∩P∩S) = n(S) – no(M) – no(M∩S) – no(S∩P) – no(S)
= 15 – 1 – 3 – 7 = 4
(b)
Students reading math’s and physics only,
no(M∩P) = n(M) – no(M) – no(M∩S) – n(M∩P∩S)
= 12 – 4 – 1 – 4 = 3.
(c)
Students reading physics only, no(P)
We have, no(P) = n(P) – no(M∩P) – no(S∩P) – n(M∩P∩S)
= 11 – 3 – 3 – 4 = 1.
(d)
Total students, from Venn – diagram,
n(M U S U P) = 4 + 1 + 7 + 3 + 1 + 3 + 4
so, n(M U S U P) = 23.
13.
Soln:
Let F = football, H = hockey, B = basketball,
So, n(U) = 500, n(F) = 285, n(H) = 195, n(B) = 115.
N(F∩B) = 45, n(F∩H) = 70, n(H∩B) = 50.
n$\overline {{\rm{FUHUB}}} $ = 50,
(a)
How many watch all three games, n(F∩H∩B) = ?
We have,
n(U) = n(F) + n(H) + n(B) – n(F∩H) – n(F∩B) – n(H∩B) + n(F∩H∩B) + n$\overline {{\rm{FUHUB}}} $
or, 500 = 285 + 195 + 115 – 70 – 45 – 50 + n(F∩H∩B) + 50
or, 500 = 595 – 115 + n(F∩H∩B)
or, n(F∩H∩B) = 500 – 480 = 20.
(b)
From the given Venn – diagram, the viewers watching exactly one of the tree games,
= no(F) + no(H) + no(B)
= 190 + 95 + 40.
= 325