Class 9 Mathematics Note
QUADRATIC EQUATION
Quadratic equations
The quadratic equation in its standard form is ax2 + bx + c = 0
The value of x can be calculated as
x =$\frac{{ - {\rm{b}} \pm \sqrt {{{\rm{b}}^2} - {\rm{\: }}4{\rm{ac\: }}} {\rm{\: }}}}{{2{\rm{a}}}}$
Here, a, b, c are the real numbers such that a ≠ 0
Nature of roots
i. if$\sqrt {{{\rm{b}}^2} - {\rm{\: }}4{\rm{ac\: }}} $> 0 ,it has two distinct and real roots
ii.if$\sqrt {{{\rm{b}}^2} - {\rm{\: }}4{\rm{ac\: }}} $< 0 ,it has no real roots, roots are imaginary.
iii. if$\sqrt {{{\rm{b}}^2} - {\rm{\: }}4{\rm{ac\: }}} $= 0 it has only one rootorrepeatedroots
Example: 1
X2 -16 = 0
X2 -16 = 0
X2 - 42 = 0
(x+4) (x- 4)= 0
x+4 = 0,i.e. x= -4
x- 4 = 0,i.e. x= 4
Therefore; x = ± 4
Example: 2
Solve 25x2-9 =0 by using formula.
25x2-9 =0
Or, 25x2 + O.x + (-9) = 0
Here, a=25
B=o
C=9
$\frac{{ - {\rm{b}} \pm \sqrt {{{\rm{b}}^2} - 4{\rm{ac}}} }}{{2{\rm{a}}}}$
$ = \frac{{ - 0 \pm \sqrt {{{\rm{o}}^2} - 4{\rm{*}}25{\rm{*}}\left( { - 9} \right)} }}{{2{\rm{*}}25}}$
= ± $\frac{{30}}{{50}}$
=± $\frac{3}{5}$
Example: 3
The area of the rectangular room is 45sq. cm if the length had been 3m less and breadth 1m , more it would have been a square . Find the length and breadth of room.
Length (l), breadth (b)
Or, l*b = 45
So, l = $\frac{{45}}{{\rm{b}}}$….(i)
Or, l – 3 = b + 1
Or, l – b = 4….(ii)
Or, $\frac{{45}}{{\rm{b}}} - {\rm{b}} = 4$
Or, $\frac{{45 - {{\rm{b}}^2}}}{{\rm{b}}} = 4$
Or, 45 – b2 = 4b
Or, b2 + 4b – 45 = 0
Or, b2 + 9b – 5b – 45 = 0
Or, b(b – 5) + 9(b – 5) = 0
Or, (b – 5)(b + 9) = 0
So, b = 5, -9.
So, b = 5cm
Now,
Or, l – b = 4
Or, l – 5 = 4
So, l = 9cm