Grade 12 Physics Solution
Wave and motion
Numerical
Part I
1.
Equation of harmonic wave y = 4.0sin$\left( {{\rm{\pi }}\left( {2.0{\rm{t}} - 0.01{\rm{x}}} \right)} \right)$ne
Comparing this equation with y = Asin(wt – kx) we get,
(i) Amplitude = 4cm
(ii) Wavelength = k = $\frac{{2{\rm{\pi }}}}{\lambda }$
Or, 0.01n = $\frac{{2{\rm{n}}}}{\lambda }$
So, λ = 200cm = 2m
(iii) Initial phase θo = 0 [at t = 0]
(iv) For speed of wave,
W = 2.0π
Or, 2πf = 2.0π
Or, $\frac{{\rm{v}}}{\lambda }$ = 1
So, v = 2m/s.
(v) w = 2.0π
2πf = 2.0π
So, f = 1Hz.
2.
Soln:
y = 0.25 * 10-3 sin(500t – 0.025x)
Comparing this equation with y = A sin(wt – kx)
We get, amplitude = 0.25 * 10-3cm
w = 500 rad/sec.
or, $\frac{{2{\rm{\pi }}}}{{\rm{T}}}$ = 500
So, T = $\frac{{250}}{{\rm{\pi }}}$ sec.
So, k = $\frac{{2{\rm{\pi }}}}{\lambda }$
So, λ = 251.32cm
Particle velocity (v) = $\frac{{{\rm{dy}}}}{{{\rm{dT}}}}$ = 0.25 * 10-3 * 50Cos (500 + - 0.025x)
So, V = 0.125Cos(500 + - 0.025x)
So, amplitude of particle velocity (A) = 0.125 cm/s.
Acceleration (a) = $\frac{{{\rm{dv}}}}{{{\rm{dt}}}}$ = 0.125 * 500sin(500 + - 0.0025x)
= 62.5sin(500 + - 0.0025x)
So, amplitude of acceleration (A) = 62.5 cm/s2.
3.
Soln:
y = 10-6sin(100t + 20x + $\frac{{\rm{\pi }}}{{\rm{a}}}$)
Comparing with y = A sin(wt + kx + θ)
We get,
K = 20,
Or, $\frac{{2{\rm{\pi }}}}{\lambda }$ = 20
So, w = 100
Or, 2πf = 100
Or, 2π$\frac{{\rm{v}}}{\lambda }$ = 100
So, v = 5m/s.
4.
Soln:
Equation of travelling wave,
Y = 10sinπ(0.01x – 2t)
Comparing it with y = Asint(wt – kx)
Y = Asin(kx – wy) [sin(-θ) = sinθ]
So, Amplitude (A) = 10cm
k = 0.01π
or, $\frac{{2{\rm{\pi }}}}{\lambda } = 0.01{\rm{*n}}$
Wavelength (λ) = 200cm = 2m
Again,
w = 2
or, 2πf = 2π
So, f = 1Hz.
Velocity = Frequency * Wavelength
= 1 * 2 = 2m/s.
Part II
5.
Soln:
Velocity of Ripple(v) = 0.20m/s.
λ = 15 * 10-3 m.
Amplitude (A) = 5.0 * 10-3m
Equation of S.H. wave,
y = Asin(wt – kx)
= Asin$\left( {\frac{{2{\rm{nv}}}}{\lambda }{\rm{t}} - \frac{{2{\rm{nx}}}}{\lambda }} \right)$
= A.sin$\frac{{2{\rm{n}}}}{\lambda }$(vt – x)
= Asin$\frac{{2{\rm{\pi }}}}{\lambda }$(vt – kx)
Velocity of particle (v) = $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$
= A * $\frac{{2{\rm{nv}}}}{\lambda }{\rm{cos}}\left( {{\rm{vt}} - {\rm{kx}}} \right)$
At maximum velocity, vt – kx = 0
Vmax = A.$\frac{{2{\rm{nv}}}}{\lambda }$
= $\frac{{5{\rm{*}}{{10}^{ - 3}}{\rm{*}}2{\rm{*n*}}0.20}}{{15{\rm{*}}{{10}^{ - 3}}}}$
= 0.42m/s.
6.
Soln:
Velocity of sound in air = 340m/s.
When f = 256Hz.
Wavelenght (λ) = $\frac{{{\rm{velocity}}}}{{{\rm{frequency}}}}{\rm{\: }}$
= $\frac{{340}}{{256}}$ = 1.32m
When λ = 0.85m
Frequency = $\frac{{{\rm{velocity}}\left( {\rm{v}} \right)}}{{{\rm{wavelength}}\left( \lambda \right)}}$
= $\frac{{340}}{{0.85}}$ = 400Hz.
7.
Equation of plane progressive wave y = asin(wt – kx)
Here, wavelength = $\frac{{{\rm{velocity}}}}{{{\rm{frequency}}}}$ = $\frac{{30}}{{250}}$ = 0.12m
Phase difference between two points when x = 0.1m apart.
θ = $\frac{{2{\rm{n}}}}{\lambda }$x = $\frac{{2{\rm{n}}}}{{0.12}}$ * 0.1 = $\frac{{5{\rm{n}}}}{3}$
So, Equation of plane progressive wave,
y = 0.03sin(2n * 250t – $\frac{{2{\rm{n}}}}{{0.12}}$ * x)
= 0.03sin2n(250t – $\frac{{25}}{3}$x)
So, Distance between two nodes = $\frac{\lambda }{2}$ = $\frac{{0.12}}{2}$ = 6cm.
8.
Soln:
Equation of stationary waves,
y = 2acos$\frac{{2{\rm{n}}}}{\lambda }$ * sin$\frac{{2{\rm{n}}}}{\lambda }$t
Incomplete
9.
10.
y = 0.1sin$\left( {200{\rm{nt}} - \frac{{200}}{{17}}{\rm{nx}}} \right)$
Comparing it with y = asin(wt – kx)
W = 200n
2πF = 200π
So, Frequency (f) = 100Hz.
Also, $\frac{{200{\rm{\pi }}}}{{17}} = {\rm{k}}$
Or, $\frac{{2{\rm{\pi }}}}{\lambda } = \frac{{200{\rm{\pi }}}}{{17}}$
So, λ = $\frac{{17}}{{100}}$ = 0.17cm = 1.7m
For speed of wave,
Or, $\frac{{2{\rm{nv}}}}{\lambda }$ = 200n
Or, v = λ * 100
So, v = 1.7 * 100 = 170m/s.
Phase difference θ between two points i.e. at x1 = 1.10m and x2 = 0.25m is given by θ = $\frac{{2{\rm{n}}}}{\lambda }$(x1 – x2)
Or, $\frac{{2{\rm{n}}}}{{1.7}}\left( {1.10 - 0.25} \right)$ = π
When amplitude is doubled A = 2 * 0.1 = 0.2
Frequency is doubled F = 2 * 100Hz = 200Hz.
Wave travelling in opposite direction is given by:
y = Asin(wt + kx)
= 0.2sin(2π * 200t + $\frac{{200}}{{17}}$nx)
11.
Given:
y = Asin(wt – kx)
a. y = Asin(wt - $\frac{{2{\rm{n}}}}{\lambda }{\rm{x}}$)
= Asin(wt – wx)
= A sinw(t – $\frac{{\rm{x}}}{{\rm{v}}}$) [where $\frac{{2{\rm{n}}}}{\lambda } = \frac{{2{\rm{nF}}}}{{\rm{v}}}$]
So, 2πF = w
Here, x is the time taken by the wave to travel from origin to x in + vediraction and t – $\frac{{\rm{x}}}{{\rm{v}}}$ is the motion of wave at earlier time which is equal to w motion of wave at point x at tome ‘t’.
For speed of the wave,
Or, k = $\frac{{2{\rm{n}}}}{\lambda }$
Or, k = $\frac{{2{\rm{\pi }}}}{{\rm{v}}}{\rm{*f}} = \frac{{\rm{w}}}{{\rm{v}}}$
So, v = $\frac{{6.6{\rm{*}}{{10}^3}}}{{20}}$ = 330m/s.
From the given information we get,
Y = 1.0 * 10-7sin(6.6 * 103t – 20x)
Spped of particle u = $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$
= 1.0 * 10-7 * 6.6 * 103cos(6.6 * 103t – 20x)
= 6.6 * 10-4cos(6.6 * 103t – 20x)
For maximum speed, we get, wt – kx = 0
umax = 6.6 * 10-4 m/s.
Part-iii
12.
Speed of sound (v) = 344m/s
Frequency (F) = 262Hz
Wavelength = $\frac{{{\rm{velocity}}}}{{{\rm{Frequency}}}}$ = $\frac{{344}}{{262}}$
= 1.31m
13.
F = 2Hz
Amplitude (a) = 7.5cm = 0.075m.
Wave speed (v) = 12m/s
So, Angular frequency (w) = 2πf
= 2π * 2 = 4π = 12.57 rad/s/
Wavelength = $\frac{{\rm{v}}}{{\rm{F}}}$ = $\frac{{12}}{2}$ = 6m
Wave number = $\frac{{2{\rm{n}}}}{\lambda }$ = $\frac{{2{\rm{n}}}}{6}$ = $\frac{{\rm{n}}}{3}$ = 1.047 rad/m.
Equation of wave,
y(x1t) = 0.075sin(wt – kx)
= 0.075(sinw(t – $\frac{{\rm{x}}}{{12}}$))
= 0.075sin12.75(t – $\frac{{\rm{x}}}{{12}}$)
14.
Speed of wave (v) = 143m/s.
Frequency (f) = 440Hz.
Amplitude(a) = 0.75mm = 0.75 * 10-3m.
Equation of standing waves,
(i) y = 2acoskx.sinwt
= 2 * 0.75 * 10-3 * cos$\frac{{2{\rm{n}}}}{\lambda }$x . sin2ft
= 1.5 * 10-3cos 2π * $\frac{{\rm{x}}}{{0.325}}$ sin2π * 440t
= 1.5 * 10-3cos 19.33x sin2760t
(ii) Amplutde = 1.5 * 10-3m
Vmax = $\frac{{{\rm{dy}}}}{{{\rm{dt}}}}$ at x = 0 and t = 0.
= 1.5 * 10-3 * 2760 = 4.15m/s.
15.
Wavelength of wave = distance between crests = 6m
Time taken by boat to complete one wave = 2.5 * 25 = 5 sec.
Wave velocity = $\frac{{\rm{w}}}{{\rm{k}}}$ = $\frac{{2{\rm{\pi }}}}{{{\rm{T*}}\frac{{2{\rm{\pi }}}}{\lambda }}}$ = $\frac{\lambda }{{\rm{T}}}$.
= $\frac{6}{5}$ = 1.2m/s.
16.
Given transverse wave,
y(x1t) = 0.65sin2π($\frac{{\rm{t}}}{{0.036}} - \frac{{\rm{x}}}{{28}}$)
y(x1t) = 0.65sin$\left( {\frac{{2{\rm{\pi t}}}}{{0.036}} - \frac{{2{\rm{\pi x}}}}{{28}}} \right)$
comparing it with y = asin(wt – kx)
Amplitude = 0.65cm = 6.5 * 10-3m
k = $\frac{{2{\rm{\pi }}}}{\lambda }$
or, $\frac{{2{\rm{\pi }}}}{{28}}$ = $\frac{{2{\rm{\pi }}}}{\lambda }$
Wavelegnth (λ) = 28cm = 28 * 10-2m
Also,
w = $\frac{{2{\rm{\pi }}}}{{0.036}}$
So, Frequency (F) = 27.78Hz.
Wave number (k) = $\frac{{2{\rm{\pi }}}}{\lambda }$ = $\frac{{2{\rm{\pi }}}}{8}$
Speed of propagation (v) = $\frac{{\rm{w}}}{{\rm{k}}}$
= $\frac{{\frac{{2{\rm{\pi }}}}{{0.036}}}}{{\frac{{2{\rm{\pi }}}}{{28}}}}$
= 7.77m/s.
17.
Soln:
Wave speed (v) = 8m/s.
Amplitude (a) = 0.07 m/s.
Wavelength (λ) = 0.32m
(i).
Frequency = $\frac{{{\rm{wave\: speed}}}}{{{\rm{wavelength}}}}$
= $\frac{8}{{0.32}}$
= 25Hz.
Period = $\frac{1}{{\rm{F}}}$ = $\frac{1}{{25}}$ = 0.045
Wave number (k) = $\frac{{2{\rm{\pi }}}}{\lambda }$ = $\frac{{2{\rm{\pi }}}}{{0.32}}$
= 19.63 rad/m.
(ii)
y = 0.007 sin(wt – kx)
= 0.07sin2π $\left( {\frac{{\rm{t}}}{{\rm{F}}} - 19.63{\rm{x}}} \right)$
= 0.07 sin2π $\left( {\frac{{\rm{t}}}{{0.04}} - 19.63{\rm{x}}} \right)$
(iii)
At t = 0.15sec and x = 0.36
y = 0.07sin2π$\left( {\frac{{0.15}}{{0.04}} - 19.63{\rm{*}}0.36} \right)$
= -0.0495 m.