Class 9 Mathematics Note
INDICES
Indices
Laws of the indices
1. am× an=am+n
2. $\frac{{{{\rm{a}}^{\rm{m}}}}}{{{{\rm{a}}^{\rm{n}}}}}$=am-n
3. a0= 1
4. (am)n = amn
5.${\rm{\: }}\frac{{{{\rm{a}}^{\rm{m}}}}}{{{{\rm{a}}^{\rm{n}}}}}{\rm{\: }}$=${\left( {\frac{{\rm{a}}}{{\rm{b}}}{\rm{\: }}} \right)^{{\rm{m}} - {\rm{n\: }}}}$
6.am= $\frac{1}{{{{\rm{a}}^{ - {\rm{m}}}}{\rm{\: }}}}$
7. am/n = $\sqrt[{\rm{n}}]{{{{\rm{a}}^{\rm{m}}}}}$
8. If am= bnthen,a= bn/m
9. if am= bnthen, m=n
10. am= bnthen, a =b
Exponential equation
The equation in which variables appears as the components of base is called exponential equation.
Examples
1.
(5x-1y2)-2÷ (25x2y-1)2
= $\frac{1}{{25}}$.x2.y-4÷54x4y-2
= 5-2x2y-4÷ 54x4y-2
= 5-2 – 4 x2 – 4 y-4 + 2
= 5-6x-2y-3
= $\frac{1}{{{5^6}{{\rm{x}}^2}{{\rm{y}}^2}}}$
2.
$\sqrt {{{\rm{a}}^6}{{\rm{b}}^{ - 2}}{{\rm{c}}^4}} $÷$\sqrt[4]{{({{\rm{a}}^4}{{\rm{b}}^{ - 4}}{{\rm{c}}^8}}}{\rm{\: }}$
= ${{\rm{a}}^{\frac{6}{2}}}{\rm{*}}{{\rm{b}}^{ - \frac{2}{2}}}{\rm{*}}{{\rm{c}}^{\frac{4}{2}}}$÷$\left( {{{\rm{a}}^{\frac{4}{4}}}{\rm{*}}{{\rm{b}}^{ - \frac{4}{4}}}{\rm{*}}{{\rm{c}}^{\frac{8}{4}}}} \right)$
= ${{\rm{a}}^3}{\rm{*}}{{\rm{b}}^{ - 1}}{\rm{*}}{{\rm{c}}^2}$÷$\left( {{{\rm{a}}^1}{\rm{*}}{{\rm{b}}^{ - 1}}{\rm{*}}{{\rm{c}}^2}} \right)$
= a3 – 1 * b -1 + 1 * c2 – 2.
= a2.
3.
$\frac{{{3^{3{\rm{a}} + 2}} - {3^{3{\rm{a}} + 1}}}}{{6{\rm{*}}{{27}^{\rm{a}}}}}$
= $\frac{{{3^{3{\rm{a}} + 1}}.3 - {3^{3{\rm{a}} + 1}}}}{{3{\rm{*}}2{\rm{*}}{3^{3{\rm{a}}}}}}$
= $\frac{{{3^{3{\rm{a}} + 1}}\left( {3 - 1} \right)}}{{{3^{3{\rm{a}} + 1}}{\rm{*}}2}}$
=$\frac{{3 - 1}}{2}$
= 1.
4.
$\frac{1}{{1 + {{\rm{x}}^{\rm{p}}} + {{\rm{x}}^{ - {\rm{q}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{ - {\rm{p}}}}}}$
Soln
= $\frac{1}{{1 + {{\rm{x}}^{\rm{p}}} + {{\rm{x}}^{ - {\rm{q}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{ - {\rm{p}}}}}}$
= $\frac{1}{{{{\rm{x}}^{ - {\rm{q}} + {\rm{q}}}} + {{\rm{x}}^{{\rm{q}} - {\rm{r}}}} + {{\rm{x}}^{ - {\rm{b}}}}}} + {\rm{\: }}\frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }} + \frac{1}{{{{\rm{x}}^{ + {\rm{r}} - {\rm{r}}}} + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{{\rm{q}} + {\rm{r}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{b}}}}}{{{{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}} + 1}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{\rm{r}}}}}{\rm{\: }} + \frac{1}{{{{\rm{x}}^{ + {\rm{r}} - {\rm{r}}}} + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{{\rm{q}} + {\rm{r}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{q}}}}}{{{{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}} + 1}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }} + \frac{{{{\rm{x}}^{ - {\rm{r}}}}}}{{{{\rm{x}}^{{\rm{rc}}}} + {{\rm{x}}^{\rm{q}}} + {\rm{\: }}1}}$
=-$\frac{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }}$=1
5.
4x-6.2x+1+32 = 0
Soln
4x-6.2x+1+32 = 0
2 2x-6.2x+1+32 = 0
2 2x-6.2x .2+32 = 0
let , 2x=P
P2 -12P +32 = 0
P2 - 8P – 4P + 32 =0
P(P -8) – 4 (P -8) = 0
(P -4)(P-8) = 0
Either P= 4 or P = 8
2x = 22,
x = 2
2x =8
x= 3