Class 10 Mathematics Note
Indices, Root and Surds
Laws of the indices
1. am× an=am+n
2. $\frac{{{{\rm{a}}^{\rm{m}}}}}{{{{\rm{a}}^{\rm{n}}}}}$=am-n
3.a0= 1
4. (am)n = amn
5.${\rm{\: }}\frac{{{{\rm{a}}^{\rm{m}}}}}{{{{\rm{a}}^{\rm{n}}}}}{\rm{\: }}$=${\left( {\frac{{\rm{a}}}{{\rm{b}}}{\rm{\: }}} \right)^{{\rm{m}} - {\rm{n\: }}}}$
6.am= $\frac{1}{{{{\rm{a}}^{ - {\rm{m}}}}{\rm{\: }}}}$
7. am/n = $\sqrt[{\rm{n}}]{{{{\rm{a}}^{\rm{m}}}}}$
8. If am= bnthen,a= bn/m
9. if am= bnthen, m=n
10. am= bnthen, a =b
Examples 1
$\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{a}} - {\rm{b\: }}}} + {{\rm{x}}^{{\rm{c}} - {\rm{b}}}}}}$+ $\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$ +$\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$
soln
$\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{a}} - {\rm{b\: }}}} + {{\rm{x}}^{{\rm{c}} - {\rm{b}}}}}}$+ $\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$ +$\frac{1}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{b}}}}}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{a}} - {\rm{b\: }}}} + {{\rm{x}}^{{\rm{c}} - {\rm{b}}}}}}$+ $\frac{{{{\rm{x}}^{\rm{c}}}}}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$ +$\frac{{{{\rm{x}}^{\rm{a}}}}}{{{\rm{\: }}1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{b}}}}}{{{\rm{\: }}{{\rm{x}}^{\rm{b}}}(1 + {{\rm{x}}^{{\rm{a}} - {\rm{b\: }}}} + {{\rm{x}}^{{\rm{c}} - {\rm{b}}}})}}$+ $\frac{{{{\rm{x}}^{\rm{c}}}}}{{{\rm{\: }}{{\rm{x}}^{\rm{c}}}{\rm{\: }}(1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}}){\rm{\: }}}}$ + $\frac{{{{\rm{x}}^{\rm{a}}}}}{{{\rm{\: }}{{\rm{x}}^{\rm{a}}}(1 + {{\rm{x}}^{{\rm{b}} - {\rm{c\: }}}} + {{\rm{x}}^{{\rm{a}} - {\rm{c}}}})}}$
= $\frac{{{{\rm{x}}^{\rm{b}}}}}{{{{\rm{x}}^{\rm{b}}} + {{\rm{x}}^{\rm{a}}} + {{\rm{x}}^{\rm{c}}}}}$ + $\frac{{{{\rm{x}}^{\rm{c}}}}}{{{{\rm{x}}^{\rm{b}}} + {{\rm{x}}^{\rm{a}}} + {{\rm{x}}^{\rm{c}}}}}$ +$\frac{{{{\rm{x}}^{\rm{a}}}}}{{{{\rm{x}}^{\rm{b}}} + {{\rm{x}}^{\rm{a}}} + {{\rm{x}}^{\rm{c}}}}}$
=$\frac{{{{\rm{x}}^{\rm{a}}} + {\rm{\: }}{{\rm{x}}^{\rm{b}}} + {{\rm{x}}^{\rm{c}}}}}{{{{\rm{x}}^{\rm{b}}} + {{\rm{x}}^{\rm{a}}} + {{\rm{x}}^{\rm{c}}}}}$
= 1
Examples 2
$\frac{1}{{1 + {{\rm{x}}^{\rm{p}}} + {{\rm{x}}^{ - {\rm{q}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{ - {\rm{p}}}}}}$
Soln
= $\frac{1}{{1 + {{\rm{x}}^{\rm{p}}} + {{\rm{x}}^{ - {\rm{q}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}} + \frac{1}{{1 + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{ - {\rm{p}}}}}}$
= $\frac{1}{{{{\rm{x}}^{ - {\rm{q}} + {\rm{q}}}} + {{\rm{x}}^{{\rm{q}} - {\rm{r}}}} + {{\rm{x}}^{ - {\rm{b}}}}}} + {\rm{\: }}\frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }} + \frac{1}{{{{\rm{x}}^{ + {\rm{r}} - {\rm{r}}}} + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{{\rm{q}} + {\rm{r}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{b}}}}}{{{{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}} + 1}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{\rm{r}}}}}{\rm{\: }} + \frac{1}{{{{\rm{x}}^{ + {\rm{r}} - {\rm{r}}}} + {{\rm{x}}^{\rm{r}}} + {{\rm{x}}^{{\rm{q}} + {\rm{r}}}}}}$
= $\frac{{{{\rm{x}}^{\rm{q}}}}}{{{{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}} + 1}} + \frac{1}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }} + \frac{{{{\rm{x}}^{ - {\rm{r}}}}}}{{{{\rm{x}}^{{\rm{rc}}}} + {{\rm{x}}^{\rm{q}}} + {\rm{\: }}1}}$
=-$\frac{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{{1 + {{\rm{x}}^{\rm{q}}} + {{\rm{x}}^{ - {\rm{r}}}}}}{\rm{\: }}$=1
Examples 3
4x-6.2x+1+32 = 0
Soln
4x-6.2x+1+32 = 0
2 2x-6.2x+1+32 = 0
2 2x-6.2x .2+32 = 0
let , 2x=P
P2 -12P +32 = 0
P2 - 8P – 4P + 32 =0
P(P -8) – 4 (P -8) = 0
(P -4)(P-8) = 0
Either P= 4 or P = 8
2x = 22,
x = 2
2x =8
X= 3
Examples 4
9a -10*3a + 9 = 0
Soln
9a -10*3a + 9 = 0
Or , 32a – 10.3a + 9 = 0
Or, let 3a= x
x2 -10x +9 = 0
x2 – 9x –x+9 =0
x(x- 9) -1(x- 9)= 0
(x-1)(x-9) =0
Either x= 1 Or 3a= 1
Or,3a = 30
Or, a=0
x =9
3a = 32
a =2
Rational Number
A rational number is a number that can be written as a ratio. That means it can be written as a fraction, in which both the numerator and the denominator are whole numbers.
Surd
A surd is an irrational number, a number which cannot be expressed as a fraction or as a terminating or recurring decimal. It is left as a square root. It can also be a non-cube number left in cube root form and so on.
A radical equation is the equation containing square root or cube root.
Example 1
Solve
$\sqrt {{{\rm{x}}^2} - 2{\rm{x}}} $-1 = x
soln
$\sqrt {{{\rm{x}}^2} - 2{\rm{x}}} $-1 = x
$\sqrt {{{\rm{x}}^2} - 2{\rm{x}}} $= x + 1
Squaring on the both sides
${{\rm{x}}^2} - 2{\rm{x}}$= (x + 1)2
x2-2x =x2+2x+1
x =$ - \frac{1}{4}$
Example 2
$\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }} - 1{\rm{\: }} = {\rm{x}}$
a. Soln:
or, $\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }} - 1{\rm{\: }} = {\rm{x}}$
or,${\rm{\: }}{\left( {\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }}} \right)^2}$ = (x+1)2
or, x2+ 7x=x2+ 2x + 1
or, 5x=1
∴ x = $\frac{1}{5}$
Example -3
$\sqrt {4{{\rm{m}}^2} - 7} {\rm{\: }} + 1{\rm{\: }} = 2{\rm{m}}$
a. Soln:
or, $\sqrt {4{{\rm{m}}^2} - 7} {\rm{\: }} + 1{\rm{\: }} = 2{\rm{m}}$
or, ${\left( {\sqrt {4{{\rm{m}}^2} - 7} } \right)^2}$ =${\left( {2{\rm{m}} + 1} \right)^2}$
or, $4{{\rm{m}}^2} - 7$ =$4{{\rm{m}}^2} + 4{\rm{m\: }} + 1{\rm{\: }}$
or, -8=4m
or, m=-2
Example 4
$\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }} - 1 = {\rm{x}}$
a. Soln:
or, $\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }} - 1{\rm{\: }} = {\rm{x}}$
or,${\rm{\: }}{\left( {\sqrt {{{\rm{x}}^2} + 7{\rm{x}}} {\rm{\: }}} \right)^2}$ = (x+1)2
or, x2+ 7x=x2+ 2x + 1
or, 5x=1
∴ x = $\frac{1}{5}$